BaranyiRM
function to fit the Baranyi and Roberts growth model to a reduced microbial growth curve.
Returns the model parameters estimated according to data collected in microbial growth experiments.
Arguments
- t
is a numeric vector indicating the time of the experiment
- Y0
is the natural logarithm of the initial microbial concentration (
ln(N0)
) at time=0- MUmax
is the maximum specific growth rate given in time units
- lag
is the duration of the lag phase in time units
Details
Model's inputs are:
t
: time, assuming time zero as the beginning of the experiment.
Y(t)
: the natural logarithm of the microbial concentration (ln(N(t)
) measured at time t.
Users should make sure that the microbial concentration input is entered in natural logarithm, Y(t) = ln(N(t))
.
References
Baranyi J, Roberts TA (1995). “Mathematics of predictive microbiology.” International Journal of Food Microbiology, 26, 199-218.
Author
Vasco Cadavez, vcadavez@ipb.pt and Ursula Gonzales-Barron, ubarron@ipb.pt
Examples
## Example: Baranyi reduced model
library(gslnls)
data(growthred) # simulated data set.
initial_values = list(Y0=0.1, MUmax=1.7, lag=5) # define the initial values
fit <- gsl_nls(lnN ~ BaranyiRM(Time, Y0, MUmax, lag),
data=growthred,
start = initial_values)
summary(fit)
#>
#> Formula: lnN ~ BaranyiRM(Time, Y0, MUmax, lag)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> Y0 -0.01690 0.24928 -0.068 0.948
#> MUmax 1.84523 0.05189 35.560 3.3e-08 ***
#> lag 9.29338 0.68563 13.555 1.0e-05 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.4117 on 6 degrees of freedom
#>
#> Number of iterations to convergence: 6
#> Achieved convergence tolerance: 1.426e-12
#>