CMAW
function to fit the water activity cardinal model (Rosso et al., 1993).
Returns the model parameters estimated according to data collected in microbial growth experiments.
Arguments
- x
is a numeric vector indicating the water activity of the experiment
- AWmin
is minimum water activity for growth
- MUopt
is the optimum growth rate
- AWopt
is optimum water activity for growth
Details
The model's inputs are:
x
: Water activity
sqrtGR
: the square root of the growth rate ($h^-1$)
Users should make sure that the growth rate input is entered after a square root transformation, sqrGR = sqrt(GR)
.
References
Rosso L, Lobry J, Charles (Bajard) S, Flandrois J (1995). “Convenient Model To Describe the Combined Effects of Temperature and pH on Microbial Growth.” Applied and environmental microbiology, 61, 610–6. doi:10.1128/AEM.61.2.610-616.1995 .
Author
Vasco Cadavez vcadavez@ipb.pt and Ursula Gonzales-Barron ubarron@ipb.pt
Examples
library(gslnls)
data(aw)
initial_values = list(AWmin=0.89, MUopt=1.0, AWopt=0.98)
fit <- gsl_nls(sqrtGR ~ CMAW(aw,AWmin,MUopt,AWopt),
data=aw,
start = initial_values)
summary(fit)
#>
#> Formula: sqrtGR ~ CMAW(aw, AWmin, MUopt, AWopt)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> AWmin 0.771652 0.005203 148.30 6.34e-12 ***
#> MUopt 1.558631 0.060203 25.89 2.19e-07 ***
#> AWopt 0.946016 0.002955 320.16 6.27e-14 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.04824 on 6 degrees of freedom
#>
#> Number of iterations to convergence: 7
#> Achieved convergence tolerance: 4.333e-12
#>