CMInh
function to fit the growth inhibitors cardinal model (Rosso et al, 1993).
Returns the model parameters estimated according to data collected in microbial growth experiments.
Arguments
- x
is a numeric vector indicating the inhibitor concentration of the experiment
- MIC
is the minimum inhibitory concentration (mM or %, accordingly)
- MUopt
is the optimum growth rate
- alpha
is the shape parameter of the curve (alpha = 1 the shape is linear; alpha > 1 the shape is downward concave; and alpha < 1 the shape is upward concave)
Details
The model's inputs are:
x
: growth inhibitor concentration
sqrtGR
: the square root of the growth rate ($time^-1$)
Users should make sure that the growth rate input is entered after a square root transformation, $sqrGR = sqrt(GR)$.
References
Rosso L, Lobry J, Charles (Bajard) S, Flandrois J (1995). “Convenient Model To Describe the Combined Effects of Temperature and pH on Microbial Growth.” Applied and environmental microbiology, 61, 610–6. doi:10.1128/AEM.61.2.610-616.1995 .
Author
Vasco Cadavez vcadavez@ipb.pt and Ursula Gonzales-Barron ubarron@ipb.pt
Examples
library(gslnls)
data(inh)
initial_values = list(MIC=0.89, MUopt=1.0, alpha=1)
fit <- gsl_nls(sqrtGR ~ CMInh(Conce,MIC,MUopt,alpha),
data=inh,
start = initial_values)
summary(fit)
#>
#> Formula: sqrtGR ~ CMInh(Conce, MIC, MUopt, alpha)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> MIC 3.7676 2.2655 1.663 0.1572
#> MUopt 0.7416 0.3426 2.165 0.0827 .
#> alpha 0.6733 0.8736 0.771 0.4757
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.2011 on 5 degrees of freedom
#>
#> Number of iterations to convergence: 8
#> Achieved convergence tolerance: 3.524e-07
#>