CMPH
function to fit the pH cardinal model (Rosso et al, 1993).
Returns the model parameters estimated according to data collected in microbial growth experiments.
Arguments
- x
is a numeric vector indicating the pH of the experiment
- pHmax
is the maximum pH for growth
- pHmin
is the minimum pH for growth
- MUopt
is the optimum growth rate
- pHopt
is the optimum pH for growth
Details
The model's inputs are:
x
: pH
sqrtGR
: the square root of the growth rate ($time^-1$)
Users should make sure that the growth rate input is entered after a square root transformation, sqrGR = sqrt(GR)
.
References
Rosso L, Lobry J, Charles (Bajard) S, Flandrois J (1995). “Convenient Model To Describe the Combined Effects of Temperature and pH on Microbial Growth.” Applied and environmental microbiology, 61, 610–6. doi:10.1128/AEM.61.2.610-616.1995 .
Author
Vasco Cadavez vcadavez@ipb.pt and Ursula Gonzales-Barron ubarron@ipb.pt
Examples
library(gslnls)
data(ph)
initial_values = list(pHmax=9, pHmin=3, MUopt=1.0, pHopt=7)
fit <- gsl_nls(sqrtGR ~ CMPH(pH,pHmax,pHmin,MUopt,pHopt),
data=ph,
start = initial_values)
summary(fit)
#>
#> Formula: sqrtGR ~ CMPH(pH, pHmax, pHmin, MUopt, pHopt)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> pHmax 9.34191 0.04002 233.42 < 2e-16 ***
#> pHmin 4.37859 0.01484 295.10 < 2e-16 ***
#> MUopt 1.05158 0.04180 25.16 2.26e-10 ***
#> pHopt 7.31579 0.08769 83.42 1.50e-15 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.04141 on 10 degrees of freedom
#>
#> Number of iterations to convergence: 28
#> Achieved convergence tolerance: 2.045e-13
#>