Skip to contents

GeeraerdST inactivation model for microbial inactivation curve. Returns the model parameters estimated according to data collected in microbial inactivation experiments.

Usage

GeeraerdST(x, Y0, Yres, kmax, Sl)

Arguments

x

is a numeric vector indicating the heating time under a constant temperature of the experiment

Y0

is the initial (time=0) bacterial concentration (log10(N0))

Yres

is a low asymptote reflecting the presence of a resistant sub-population (log10(Nres))

kmax

is the maximum inactivation rate

Sl

represents shoulder phase preceding the sharp inactivation slope of the curve

Value

An object of nls class with the fitted parameters of the model

Details

The model's inputs are:

t: time, assuming time zero as the beginning of the experiment.

N(t): the bacterial concentration measured at time t.

Users should make sure that the bacterial concentration input is entered in base 10 logarithm, Y(t) = log10(N(t)).

References

Geeraerd AH, Valdramidis VP, Van Impe JF (2005). “GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves.” International Journal of Food Microbiology, 102(1), 95-105. ISSN 0168-1605, doi:10.1016/j.ijfoodmicro.2004.11.038 .

Author

Vasco Cadavez vcadavez@ipb.pt and Ursula Gonzales-Barron ubarron@ipb.pt

Examples

library(gslnls)
data(mafart2005Li11)
initial_values = list(Y0=10, Yres=7, kmax=0.7, Sl=4)
fit <- gsl_nls(logN ~  GeeraerdST(Time,Y0,Yres,kmax,Sl),
               data=mafart2005Li11,
               start =  initial_values)
summary(fit)
#> 
#> Formula: logN ~ GeeraerdST(Time, Y0, Yres, kmax, Sl)
#> 
#> Parameters:
#>      Estimate Std. Error t value Pr(>|t|)    
#> Y0   10.07258    0.08464 119.000 2.37e-11 ***
#> Yres  6.93372    0.07834  88.504 1.40e-10 ***
#> kmax  0.59485    0.05436  10.943 3.46e-05 ***
#> Sl    5.67218    0.82123   6.907 0.000455 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.1192 on 6 degrees of freedom
#> 
#> Number of iterations to convergence: 7 
#> Achieved convergence tolerance: 1.043e-10
#> 

plot(logN ~ Time, data=mafart2005Li11)
lines(mafart2005Li11$Time, predict(fit), col="blue")