Skip to contents

HuangRGS reparametrized Gompertz survival model for microbial inactivation. Returns the model parameters estimated according to data collected in microbial inactivation experiments.

Usage

HuangRGS(x, Y0, k, M)

Arguments

x

is a numeric vector indicating the heating time under a constant temperature of the experiment

Y0

is the initial microbial concentration (log10(cfu 1/g))

k

is the inactivation rate (1/s)

M

is a time constant (s)

Value

An object of nls class with the fitted parameters of the model

Details

The model's inputs are:

t: time, assuming time zero as the beginning of the experiment.

Y(t): the base 10 logarithm of the bacterial concentration ($log10(X(t)$) measured at time t.

Users should make sure that the bacterial concentration input is entered in base 10 logarithm, Y(t) = log10(X(t)).

References

Huang L (2009). “Thermal inactivation of Listeria monocytogenes in ground beef under isothermal and dynamic temperature conditions.” Journal of Food Engineering, 90(3), 380-387. ISSN 0260-8774, doi:10.1016/j.jfoodeng.2008.07.011 , https://www.sciencedirect.com/science/article/pii/S0260877408003439.

Author

Vasco Cadavez vcadavez@ipb.pt and Ursula Gonzales-Barron ubarron@ipb.pt

Examples

library(gslnls)
data(bixina)
initial_values = list(Y0=5.6, k=0.37, M=6.8)
fit <- gsl_nls(lnN ~ HuangRGS(Time, Y0, k, M),
           data=bixina,
           start =  initial_values)
summary(fit)
#> 
#> Formula: lnN ~ HuangRGS(Time, Y0, k, M)
#> 
#> Parameters:
#>     Estimate Std. Error t value Pr(>|t|)    
#> Y0  5.502090   0.046071  119.43  < 2e-16 ***
#> k   0.182138   0.009672   18.83 7.53e-12 ***
#> M  12.053884   0.150299   80.20  < 2e-16 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.1154 on 15 degrees of freedom
#> 
#> Number of iterations to convergence: 12 
#> Achieved convergence tolerance: 1.786e-12
#> 

plot(lnN ~ Time, data=bixina)
lines(bixina$Time, predict(fit), col="blue")