Skip to contents

WeibullPH inactivation model for microbial inactivation curve. Returns the model parameters estimated according to data collected in microbial inactivation experiments.

Usage

WeibullPH(t, Y0, k, alpha)

Arguments

t

is a numeric vector indicating the time of the experiment

Y0

is the base 10 logarithm of the initial (time=0) bacterial concentration

k

is the inactivation rate ()

alpha

is the ???

Value

An object of nls class with the fitted parameters of the model

Details

The model's inputs are:

t: time, assuming time zero as the beginning of the experiment.

Y(t): the base 10 logarithm of the bacterial concentration X(t) measured at time t.

Users should make sure that the bacterial concentration input is entered in base 10 logarithm, Y(t) = log10(X(t)).

The following parameters can be estimated using Weibull function:

t: is heating time under a constant temperature

Y0: is the initial (time=0) bacterial counts in base 10 logarithm of the initial bacterial counts;

k: is the inactivation rate (log cfu/s or log cfu/min, or log cfu/h)

alpha: is the ????

References

Huang L (2009). “Thermal inactivation of Listeria monocytogenes in ground beef under isothermal and dynamic temperature conditions.” Journal of Food Engineering, 90(3), 380-387. ISSN 0260-8774, doi:10.1016/j.jfoodeng.2008.07.011 , https://www.sciencedirect.com/science/article/pii/S0260877408003439.

Author

Vasco Cadavez vcadavez@ipb.pt and Ursula Gonzales-Barron ubarron@ipb.pt

Examples

library(gslnls)
data(bixina)
initial_values = list(Y0=6.0, k=1.0, alpha=0.2)
fit <- gsl_nls(lnN ~ WeibullPH(Time, Y0, k, alpha),
           data=bixina,
           start =  initial_values)
summary(fit)
#> 
#> Formula: lnN ~ WeibullPH(Time, Y0, k, alpha)
#> 
#> Parameters:
#>       Estimate Std. Error t value Pr(>|t|)    
#> Y0    5.533409   0.038942  142.09  < 2e-16 ***
#> k     0.005061   0.001763    2.87   0.0117 *  
#> alpha 2.395348   0.131615   18.20 1.23e-11 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.09671 on 15 degrees of freedom
#> 
#> Number of iterations to convergence: 23 
#> Achieved convergence tolerance: 2.528e-13
#> 

plot(lnN ~ Time, data=bixina)
lines(bixina$Time, predict(fit), col="blue")