Skip to contents

ZwieteringFM function to fit the Zwietering full growth model to a complete microbial growth curve. Returns the model parameters estimated according to data collected in microbial growth experiments.

Usage

ZwieteringFM(t, Y0, Ymax, MUmax, lag)

Arguments

t

is a numeric vector indicating the time of the experiment

Y0

is the natural logarithm of the initial microbial concentration (ln(N0)) at time=0

Ymax

is the natural logarithm of the maximum concentration (ln(Nmax)) reached by the microorganism

MUmax

is the maximum specific growth rate given in time units

lag

is the duration of the lag phase in time units

Value

An object of nls class

Details

Model's inputs are:

t: time, assuming time zero as the beginning of the experiment.

Y(t): the natural logarithm of the microbial concentration (ln(N(t)) measured at time t.

Users should make sure that the microbial concentration input is entered in natural logarithm, Y(t) = ln(X(t)).

References

Zwietering MH, Jongenburger I, Rombouts FM, van't Riet K (1990). “Modeling of the Bacterial Growth Curve.” Applied and Environmental Microbiology, 56(6), 1875-1881. ISSN 0099-2240, https://aem.asm.org/content/56/6/1875.

Author

Vasco Cadavez vcadavez@ipb.pt and Ursula Gonzales-Barron ubarron@ipb.pt

Examples

## Example: Zwietering full model
library(gslnls)
data(growthfull)  # simulated data set.
initial_values = list(Y0=0, Ymax=22, MUmax=1.7, lag=5) # define the initial values
fit <- gsl_nls(lnN ~ ZwieteringFM(Time, Y0, Ymax, MUmax, lag),
           data=growthfull,
           start =  initial_values)
summary(fit)
#> 
#> Formula: lnN ~ ZwieteringFM(Time, Y0, Ymax, MUmax, lag)
#> 
#> Parameters:
#>       Estimate Std. Error t value Pr(>|t|)    
#> Y0     0.01863    0.47551   0.039     0.97    
#> Ymax  22.14679    0.60152  36.818 3.99e-11 ***
#> MUmax  2.29185    0.18848  12.160 6.88e-07 ***
#> lag    5.85464    0.48451  12.084 7.26e-07 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.7826 on 9 degrees of freedom
#> 
#> Number of iterations to convergence: 7 
#> Achieved convergence tolerance: 9.199e-11
#>